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Fluid distribution and transport in porous media at low 
wetting phase saturations 

H Ted Davis, Robert A Novy, L E Scriven and Pedro G Toledo 
Department of Chemical Engineering and Materials Science, University of Minnesota, 
421 Washington Avenue SE, MN 55455, USA 

Received 10 August 1990 

Abstract .  Capillary pressure, hydraulic conductivity and the capillary dispersion 
coefficient have been observed to obey power laws in the wetting phase saturation. 
We relate power-law behaviour at low wetting phase saturations, i.e. a t  high capillary 
pressures, to the thin-film physics of the wetting phase and the fractal character of 
the pore space of natural porous media. 

1. Introduction 

The capillary pressure and the hydraulic conductivities (permeabilities) of wetting and 
non-wetting phases in a porous rnedium are complicated functions of wetting phase 
saturation Sw , the morphology and composition of pore space, and the process whereby 
wetting and non-wetting phases come to occupy the porous medium. The capillary 
pressure and permeability behaviour a t  low saturations of wetting phase provides 
information about the asperities or roughness of pore space and about the physics of 
thin films on pore surfaces that cannot be obtained from the high saturation studies. 
The properties of wetting phase (water) a t  low saturation is of substantial interest to  
the soil scientist in connection with agricultural crops, the balance of aquifers and the 
migration of agricultural, chemical and nuclear contaminants. 

In this paper we describe recent work [1,2] in which we have derived and tested 
scaling laws based on the hypotheses that pore space asperities or roughness are frac- 
tally distributed and that a t  sufficiently low saturation the hydraulic conductance of 
wetting phase is controlled by thin films. 

2. Porespace morphology of natural sandstone 

A scanning electron micrograph of a fracture-exposed surface of an oil reservoir sand- 
stone is shown in figure 1 [3]. The major grains and pores of this clayey consolidated 
sandstone are on the order of 100 micrometres in dimension (figure l(a)) .  Stacks of 
book-like kaolinate clays (figure l ( b ) ,  (e) ,  (f)) are attached to the pore surfaces. These 
stacks sometimes extend hundreds of micrometres in width. The spacing between the 
booklets is about 10 micrometres and between the kaolinate platelets is less than a mi- 
crometre (figure l(f)). There are also aggregates of quartz crystallites (chert) on the 
pore surfaces (figure l (c )  and ( d ) ) .  The crystallites are a few tenths of a micrometre in 
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SURFACE TEXTURE OF RESERVOIR SANDSTONE 

Figure 1. 
reservoir sandstone [3]. 

Scanning electron micrograph exposing the texture of the porosity of 

diameter. Between the aggregates are porous regions of the order of a few micrometres 
to  a micrometre in diameter. Within the chert aggregate are intergranular spaces of 
the order of a few hundredths of a micrometre in size. 

The multisized objects in figure 1 are consistent with scanning electron microscope 
(SEM) studies reported for several natural sandstones by Katz and Thompson [4]. 
They measured the number of features (asperities) versus size of t.he fcat,ure on several 
natural porous sandstone fracture surfaces and concluded that pore space is fractally 
distributed between a minimum dimension 1, (of the order of 10 to loOK) and a 
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maximum dimension I ,  (of the order of 100pm). According to  the argument of Katz 
and Thompson the porosity q5 of fractal sandstone is 

where A is of the order of 1 and D is the fractal or Hausdorff dimension. By plotting 
the number of geometric features against size, they found values of D ranging from 
2.57 to  2.87 from SEM studies of five natural sandstones. 

If the volumes of the cavities formed by the various asperities illustrated in figure 1 
are fractally distributed, this has particular implications for the capillary pressure 
behaviour a t  low saturations of wetting phase. In what follows we explain and report 
tests of these implications. 

3. The capillary pressure and the saturation of pendular structures and 
thin films 

We assume one of the fluids strongly wets the porous medium. Thus, even at  sat- 
urations so low that bulk wetting phase seemingly exists only as isolated regions or 
pendular structures, the wetting phase remains hydraulically connected through thin 
films. To achieve a given wetting phase saturation S,, the pressures P, in bulk wet- 
ting phase and P,, in bulk non-wetting phase must satisfy the Young-Laplace (YL) 
equa.tion for the capillary pressure P,, i.e. P, E P,, - P, = 2 H 7  , where H is the 
mean curvature and y is the interfacial tension of the meniscus between wetting and 
non-wetting phases. The mean curvature is related to  the principal radii of curvature 
R, and R, of the meniscus by the expression 2H = ( l /Rl  + 1/R,). Fixing the mean 
curvature of the menisci between wetting and non-wetting phases fixes the saturation 

The Young-Laplace equation is applicable when both the wetting and non-wetting 
phases are present in bulk amounts. When the wetting phase is present as a thin film 
(thinner than a few thousand angstroms), the thin film pressure differs from that  of 
bulk wetting phase by the disjoining pressure II(h) which depends on film thickness 
h.  In this case the Young-Laplace equation must be replaced with the augmented 
Young-Laplace (AYL) equation [5] 

s w .  

P, = rqh)  + 2Hy. ( 2 )  

The YL and AYL equations provide the basis for understanding how the capil- 
lary pressure sets the inventory of wetting fluid a t  saturations below the percolation 
threshold, in which case wetting phase exists as thin films or as 'pendular structures' 
a t  intergranular contacts, i.e. isolated regions of smaller-than-average porosity, or in 
nooks and crannies provided by the pore surface asperities. The pendular structures 
are hydraulically connected by thin films. In conical and hemispherical pits, the 
menisci of the pendular structures are pieces of a sphere whose radius r ,  (H = r,') is 
given by the YL equation r ,  = 2y/P,, whereas the menisci along the pore edges and 
between the fused spheres are pieces of a cylinder whose radius r, ( H  = (2rC) - ' )  is 
r ,  = y/P,. By elementary geometry, it follows that the volume of wetting phase in 
pits scales as rz and in wedges and collars scales as rz. Thus, since pits, pore edges 
and fused grains are the most likely sites of pendular structures, we expect the scaling 
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relation Sps = A P F ~  + B P g 3  if the sites are non-fractal, i.e. if they are all of the same 
characteristic length scale. If, on the other hand, the pendular structures are in sites 
fractally distributed according to  (l), then a t  a capillary pressure Pc all the porosity 
with dimension 1 < r, = 2y /Pc  would be filled with wetting phase and so SPb oc rF-D, 
or 
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S PS  ZAP^(^-^). ( 3 )  

Pendular structures in self-similar fractal media are depicted in figure 2. Shortly 
after the appearance of the work of K a t z  and Thompson, de Gennes [6] pointed out 
that  ( 3 )  holds in the cases of a pore space of self-similar iterative flocs of the type 
shown in figure 2 and a pore space of self-similar iterative pits (self-similar pits within 
pits). The Mengcr sponge shown in figure 2 is an interesting example because its 
fractal dimension can be easily determined. The  sponge is generated by the following 
iterative process. A cube with sides of length R is partitioned into 27 cubes the length 
of whose sides is R / 3 .  The seven cubes along the three axes of symmetry of the 
parent cube are removed. The  partitioning and deletion process is iterated for each 
of the remaining cubes. The  hlenger sponge is made by indefinite continuation of 
this process. The  resolution length r is defined as the size of the smallest measurable 
feature. The  number N ,  of solid cubes increases with resolution as N ,  = ( R / r ) D  and 
the fractal or Hausdorff dimension D of the sponge equals log 20/log 3 21 2.73. 

PENDULAR STRUCTURES : FRACTAL ROUGHNESS 

Figure 2. Wetting liquid present in fractally distributed pendular strutures. The 
examples given here are geometrically regular, self-similar fractal objects. 

As is obvious from figure 1, a natural sandstone is not a regular self-similar fractal. 
Instead, consistent with the arguments given by Katz and Thompson [7 ] ,  we believe 
i t  is better viewed as a disordered assembly of matrix grains ranging in size from I , ,  
to  l z g .  The  size distribution of pores will naturally be broad if that  of the granular 
subparts is broad. From the work of Katz and Thompson we anticipate D N 2.5- 2.8, 
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and so according to  (3) the pendular structure inventory approaches zero as P;0.5 t o  
P;o.2, a much weaker function of P, than in the case of non-fractal structures. 

At saturations below the wetting phase percolation threshold bulk wetting phase 
does not span the sample. Instead, wetting phase is present as isolated pendular 
structures hydraulically connected to  one another through thin films. The thickness 
of these films is fixed by the capillary pressure through the AYL equation, equation (2). 
Thin films tend t o  form in regions of pore space whose mean radius of curvature is 
large compared to  film thickness h,  that  is in relatively smooth regions. Otherwise, 
pendular structures will form instead of thin films. Thus, we expect the capillary 
contribution, 2Hy, to  be negligible compared to  the disjoining pressure contribution, 
i.e. we expect P, N n ( h )  for thin films.. If the disjoining pressure obeys a power law 
of the form n ( h )  0: h-", it then follows from P, N II(h) that  S,, 0; Pc-llm. 

The total saturation of wetting phase is given by S, = S,, + Sp8. However, under 
the conditions of the experiments to  be discussed in a later section, the thin film 
saturation is generally negligible compared to  that of pendular structures, and so the 
behaviour of the capillary pressure against wetting phase saturation can be used as a 
probe of pore space roughness independently of the disjoining pressure behaviour. 

4. Hydraulic conductivity and capillary dispersivity 

The local flow of wetting phase a t  low saturations is very complicated because i t  
involves flow in geometrically complex pendular structures and thin films. However, if 
the pendular structures do not span the sample, the major resistance to  flow will be the 
thin films of thickness h.  Thus, K, 0: h3, and if the disjoining pressure obeys the power 
law II(h) rx h-", then Ii', 0: Pc-3/m. If, furthermore, the inventory of wetting phase is 
primarily that  of pendular structures fractally distributed, equation (4),  the hydraulic 
conductivity obeys the scaling law Ii', rx Si'"(3-D) . In this case, the saturation 
dependence of the hydraulic conductivity of wetting phase yields information regarding 
the disjoining pressure dependence on film thickness and the geometry of pore space. 

If a sample porous medium at  low wetting phase saturation contacts a reser- 
voir of wetting phase, i t  will spontaneously imbibe wetting phase according to  a 
convection-dispersion equation in which the capillary dispersivity, D,, is [8] D, = 
-(K,/p,)(dP,/ dS,). The effect of capillary dispersion can be either hypodisper- 
sive, diffusive or hyperdispersive depending on how D,(S, ) behaves with decreasing 
S,. If D,(S,) tends t o  zero as S, approaches zero, the invading front of wetting phase 
disperses less than in a diffusive front. If D,(S,) tends t o  infinity as S, approaches 
zero, the invading front disperses more broadly than in a diffusive front. If D,(S,) 
tends to  a constant value as S, approaches zero, the front in the experiment indicated 
spreads in a diffusive manner. 

If S, N Sps, if the pendular structures are fractally distributed, and if thin films 
control hydraulic conductivity, the capillary dispersion coefficient obeys the scaling 

a t  low wetting phase saturations. Thus,  the spreading law D, 0: S, 
will be hypodispersive if m < 3/(4 - D ) ,  hyperdispersive if m > 3/(4 - D )  and 
diffusion-like if m = 3/(4 - D ) .  By changing wetting phase (e.g., water in air against 
oil in air), one could expect to  find both hypo and hyperdispersion in the same porous 
medium. 

[ 3 - " ( 4 - D ) ] / n ( 3 - D )  
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Bacri e2 a1 [8] observed hyperdispersion in oil/water flow in a porous medium. 
However, their experiments were conducted at saturations higher than  those for which 
we expect the  scaling laws given here to hold. 

5. Comparison of theory and experiment 

Few da ta  exist on the behaviour of a wetting phase at low saturation in a porous 
medium. In the  soils literature, scaling laws of the form P, oc S l a ,  I(, 0: Sk and 
D, 0: S&, where a ,  b and c are positive constants, have been observed empirically [9- 
131. 

We located and  analysed [1,2] three sets of carefully measured da ta  on capillary 
pressure and hydraulic conductance of sandstones and clayey soils. Melrose [14] carried 
out a series of measurements of the capillary pressure of water in the presence of air in 
Berea sandstone. Davis [l] found tha t  the capillary pressure curve obeys the scaling 
law P, 0: S;;2.23, which implies a fractal roughness of the pore space of Berea sandstone 
with a fractal dimension D = 2.55. This result compares favourably with the range of 
values 2.57 < D < 2.87 found by Katz and Thompson in SEM studies of other natural 
sandstones. 

Nimmo and Akstin [15] reported measurements of the capillary pressure and hy- 
draulic conductance of water at low saturations in the presence of air in several com- 
pacted samples of Oakley sands (a clayey soil). The  da ta  of Viani e t  a /  [16] on the dis- 
joining pressure of clayey soils fit the formula n ( h )  = 250h-l/’dyn ~ m - ~ / ’ ) .  We anal- 
ysed [2] their da t a  in terms of the scaling laws P, 0: 
implied by the  assumptions of negligible thin film inventory, fractally-distributed pen- 
dular structures, thin film controlled hydraulic conductivity, and a power law disjoin- 
ing pressure II(h) oc h-m. The  capillary pressure da ta  were used to  obtain the fractal 
dimension D .  We set m = 112 in accordance with the results of Viani e t  a1 and 
computed from 3/m(3 - D )  the exponent of the scaling law for I<,. The results are 
summarized in table 1. The  fractal dimensions deduced from the capillary pressure 
curves range from 2.09 t o  2.62 with an average value of 2.45. With the exception of 
sample 4 ,  the fractal dimensions of all the samples compare well to the value 2.55 of 
Berea sandstone. 

3/m(3-D) and Ii, 0: S, 

Table 1. 
sands (data from [15]). 

Fractal dimension and permeability scaling law for compacted Oakley 

Sample Fractal Exponent of K w ( S w )  
dimension 
D 3/m(3 - D) Measured 

2.59 
2.37 
2.62 
2.09 
2.26 
2.35 
2.67 
2.52 
2.59 

15.2 
10.0 
16.5 
6.9 
8.5 
9.7 

19.1 
13.2 
15.5 

12.7 
12.7 
14.1 

8.9 
15.3 

8.4 
13.4 
12.2 
16.8 
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The predicted exponent for A'', agrees with the measured value to  better than 
24% for all samples except numbers 5 and 7. Given the simplicity of the model, the 
agreement between theory and experiment as demonstrated in table 1 is satisfactory. 

As a matter of clarification, we point out that  the assumption that film flow 
controls the hydraulic conductance does not require that most of the flow paths be 
thin films. For example, suppose the conductance of a strip of film is 1000 times less 
than that  of a strip of the same length of a pendular structure. Then if in a series 
of strips, only 1% are thin films, the net hydraulic resistance of the thin films in the 
series is ten times larger than the net hydraulic resistance of the pendular structures 
in the series. 

Ward and Morrow's [17] capillary pressure curves for water in the presence of 
air in a number of low permeability sandstones are plotted in figure 3.  The curves 
have two distinct regions. There is a lowest saturation region where the deduced 
value of D is near 2 and there is a higher saturation region in which D ranges from 
2.61 to 2.89. The values of D in the higher saturation region are consistent with the 
findings of Katz and Thompson, but those in the low saturation region (especially 
those less than 2) do not fit the fractal model. It is possible that in the low saturation 
regime (where the capillary pressures are greater than 100 bars, the highest capillary 
pressure in Melrose's experiment was 93.6 bars) the pendular structures have been 
totally removed and only thin films remain. If the disjoining pressure of the thin films 
obeys the water-on-quartz law, II(h) 0: h-' ,  then S,, 0: P;', and if S, N Stf, then 
the expected scaling law would be P, 0: S;', consistent with the value D = 2. Thus, 
perhaps the low saturation region of the capillary pressure curves of figure 3 is one in 
which 
is one 
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most of the wetting phase occupies thin films, and the higher saturation region 
in which the wetting phase samples a fractal distribution of pore sizes. 

D = 2.61 
D = 2 . 6 8 1  

D = 1.67 

D = 2.81 

0.001 0.01 0.1 1 0.001 0.01 0.1 1 0.001 0.01 0.1 1 
S S S 

Figure 3. Capillary pressure curves for water in low permeability sandstones [17]. 

summary, under the assumptions that  pendular structures occupy pore space 
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of fractal dimension D, that  the disjoining pressure obeys the power law II(h) oc h-" , 
that  the wetting phase inventory is primarily pendular structures, and that thin films 
control the hydraulic resistance of wetting phase, we deduce the power laws 

x o( s: X = P,, K w ,  D, (4) 

where for capillary pressure vc = -1/(3 - D) ,  for permeability v, = 3 / 4 3  - D), 
and for capillary dispersion vc = [3 - m(4 - D)] /m(3  - 0). The experimental work 
described above lends support to  the scaling laws for P, and I<, in the cases of natural 
sandstones and clayey soils. 

References 

Davis H T 1989 Europhys. Lett. 8 629 
Toledo P G, Novy R A ,  Davis H T and Scriven L E 1990 Soil Sci. Soc. Am.  J .  54 673 
Sutanto E, Davis H T and Scriven L E 1990 SPE Annual Technical Conference and Erhibition 

(New Orleans, LA ,  1990)  SPE 20518 (Richardson, TX: Society of Petroleum Engineers) 
Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325 
Mohanty K K, Davis H T and Scriven L E 1981 Thin films and fluid distributions in porous 

media Surface Phenomena in Enhanced Oil Recovery ed D 0 Shah (New York: Plenum) pp 
395-409 

de Gennes P G 1985 Partial filling of a fractal structure by a wetting fluid Physics o f  Disordered 
Materials ed D Adler and S R Ovshinsky (New York: Plenum) pp 227-41 

Katz A J and Thompson A H 1986 Phys. Rev. Lett. 56 2112 
Bacri J-C, Leygnac C and Salin D 1985 J .  Physique Lett. 46 L467 
Brooks R H and Corey A T 1964 Hydraulic properties of porous media Hydrology paper no 3, 

Gardner w R, Hillel D and Benyamini Y 1970 Water Resources Res. 6 851 
Gardner W R 1960 UNESCO 15 37 
Campbell G S 1974 Soil Sci. 117 311 
Gardner W R and Mayhugh M S 1958 Soil Sci. Am.  PTOC. 22 197 
Melrose J C 1988 Characterization of reservoir rocks by capillary pressure techniques Charac- 

terization o f  P O T O U S  Solids ed K K Unger, J Rouquerol, K S W Sing and H Kral (Amsterdam: 
Elsevier) pp 253-61 

C o / o r a d o  State University, Fort Collins, CO 

Nimmo J R and Akstin K C 1988 Soil Sci. Soc. Am.  J .  52 303 
Viani B E, Low P F and Roth C B 1983 J .  Colloid Interface Sci. 96 229 
Ward J S and Morrow N R 1987 Soc. Pet. Ens. Form. Eva/. 345 


